MAT103 Overview and Sample Problems

All the important concepts in calculus involve limits and infinite pro-
cesses and so we begin with an intensive but generally intuitive treatment
of limits. (Rigorous treatment of limits is reserved for courses like 215.)
Building on our knowledge of limits, we move on to the notions of continuity
and differentiability. We learn to analyze common ways that continuity and
differentiability may fail for a given function, and we develop a library of
derivative formulas for all the standard functions which we can use to study
rates of change, to understand the sensitivity of a system to small changes
in the control parameters and as a tool for approximation. The overarch-
ing theme of the course is how to use limits and derivatives to understand
the main features of the behavior of a complicated function. This theme is
further developed through advanced curve-sketching and optimization in the
second half of the course. Finally, we investigate cumulative change, average
behavior and an introduction to modeling and simple differential equations
when we learn about definite and indefinite integrals and the Fundamental
Theorem of Calculus. These topics are further developed for functions of a
single variable in Calculus II and in the multivariable setting in Calculus III.

All the sample problems here come from past MAT103 quizzes and exams
and are chosen to represent core concepts and techniques from the class
corresponding to a B-level of knowledge.

Problems on Limits & Continuity

We use limits to understand general trends and important features related
to the domain and range of complicated functions, especially near problem-
atic points at the edge of the domain, where the input values or output values
become infinitely large, or where we see competing trends of growth and de-
cay in expressions that approach 0/0 or oco/oo. Students learn how to work
without using a calculator as a substitute for a general working knowledge of
the basic functions and their graphs.

We need a variety of techniques to understand and compute limits (or
to understand how exactly they may fail to exist), and often these general
techniques must be modified or adapted depending on the special features of
the functions that appear, requiring many ideas from precalculus including



factoring techniques and other algebraic manipulations, properties of poly-
nomial and rational functions and their inverses, the rules for manipulating
logarithmic and exponential functions and also trigonometric functions and
identities.

The notions of limit and continuity are closely related. We say that f is
continuous at a point if the behavior of f there is consistent with the behavior
of f nearby:

lim f(z) = f <lim x) = f(c) means f is continuous at = = c.
Tr—cC Tr—C

Example (Limit of type 0/0) Consider the function
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f(z)
and its graph.
a) Factor f(z) and simplify as much as possible.

b) Use your result in a) to compute the limit of f(z) as  — 2, or explain
why this limit does not exist.

c) What does the calculation in part b) tell you about the graph of f?

Note: A problem like this would typically occur as an intermediate step in
a question where we are asked to use limits to understand asymptotes and
classify the discontinuities of a function.

Many students with prior calculus experience may be tempted to use
I’Hopital’s Rule to compute the limit above. However, we will often en-
counter limits where I’'Hopital’s Rule is not helpful. Instead we might need
to understand the dominant behavior in different areas of the domain, a pow-
erful general techniques which also plays a very important role in MAT104
to help us analyze the convergence behavior of infinite series and improper
integrals.)

Example (L’Hépital Fails) Consider the function
e

f(x)_3x+4x

and its graph.



a) Analyze the behavior of the numerator and the denominator as z —
+00. What is the “dominant term” in each case?

b) Use your work in a) to compute lim, o, f(z) or determine that this
limit does not exist. What feature of the graph of f does this limit
calculation reveal?

c¢) Use your work in part a) to compute lim,_,_, f(z) or determine that
this limit does not exist. What feature of the graph of f does this limit
calculation reveal?

Problems on Derivatives & Continuity ]

Building on our knowledge of limits, especially those of type 0/0 we learn
to compute the derivative f’ defined as
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whenever this limit exists. The limit definition of derivative allows us to
extend the idea of slope from straight lines to more general curves, and in
the process we define the tangent line as the best linear approximation to a
curve at a point.

Example (Computing Derivatives)
a) Find dy/dz if y = tan3(Inz).

b) Find the slope of the curve C defined by xy = 3z + 2y at the points
where it crosses the line y = x.

c) Find b if the line connecting the points (0,b) and (1,1) intersects the
parabola y = 22 in a right angle.
Example (Rate of Change) A particle moves along a straight line track
so that its position at time ¢ > 0 is given by
s(t) = (> + 2t)e "

Compute the velocity v(t) of the particle. How far does the particle move
forward before reversing direction? If this situation remains unchanged, what



is the total distance the particle would travel during the time interval 0 <
t < o00?

Example (Continuity/Differentiability #1) Suppose that
flx)=2>—r—aifr>0and f(r) = pz—4if z <0.

a) For what values of the parameter o will f be continuous at x = 0?7 For
what values of § will the function f be continuous at x = 07

b) If the parameters av and ( are chosen in such a way that f is continuous
at = 0, then for what values of o and [ will the function f also be
differentiable at x = 07

Example (Continuity /Differentiability #2) Suppose that
f(z) =zsin(l/z) if 2 > 0 and f(x) =0if z <O0.

Compute the necessary limits to determine whether or not f is continuous
at x = 0. Use the limit definition of the derivative to determine whether or
not f is differentiable at z = 0.

Problems on Optimization, Extrema, Curve-Sketching

Once we have learned how to compute the slope of a curve we can analyze
the sign of the slope function to understand the general features of the curve.
We can determine the range of quite complicated functions and locate the
peaks and valleys in their graphs with precision (provided we can solve for
the roots of the slope function, often the most difficult part of the problem).
Understanding the (local and global) extreme values of a function is the
mathematical foundation for the theory of optimization, one of the most
frequent and important applications of calculus, allowing us to understand
how to choose input or control parameters to maximize good outcomes and
minimize bad ones.

Constrained optimization is important in many disciplines, both as a
theoretical tool and also in applications. This topic is further developed in
MAT201 (and also in MAT175), but already in MAT103 we can solve some
interesting examples. These problems often require that we are familiar with
geometric formulas for area and volume including area of triangles and circles



as well as surface area and volumes of spheres, cylinders and cones. Given
constraints in the form of construction materials of a particular type, we can
use calculus as one tool in making design decisions, for example to design a
container with maximum storage capacity and minimum construction cost.

Example (Curve-Sketching) Consider the function f(z) = z*Inz. What
is its natural domain? Determine the angle with which this curve crosses the
x-axis. Where is f increasing? decreasing? Determine all local and global
extrema for f or determine that they do not exist. Determine the range of

f
Example (Constrained Optimization) A rectangular sheet is to be rolled
into a hollow cylinder by gluing a par of opposite sides together. Given that

the sheet has perimeter 67 centimeters, what is the maximum possible volume
of the cylinder obtained in this way?

Problems on Integration

The last big topic in MAT103 is integration which is further developed in
MAT104 and which is extended to more complicated regions in three dimen-
sional space in the second half of MAT201. The definite integral fab f(x)dx
defines the area under a continuous curve on an interval [a,b] as the limit
of approximating sums. The Fundamental Theorem of Calculus connects
integration to what we have learned about derivatives and rates of change,
giving an efficient way to compute these areas, provided we can find an an-
tiderivative for the integrand f.

Reminder: The definite integral counts signed area, and thus the definite
integral over a region where f(z) changes sign will not represent our usual
notion of the area, due to cancellation. We use the term total area to refer
to the more conventional idea of area where we adjust to eliminate this
cancellation effect.

Frequently we can work backwards from theoretical or conjectural infor-
mation about rates of change to infer a model that describes all states of our
system. Projectile motion is a good starting example of this kind of analysis.
Given that gravitational acceleration increases velocity toward the surface of
the earth at a rate of (roughly) 10 meters per second for every second of an
object’s free fall (in the absence of significant air resistance), we can work



backwards from a(t) = —10 ft/sec/sec to infer that
v(t) = vy — 10t ft/sec and h(t) = hg + vot — 5t ft

where vy is the initial velocity and hq is the initial height at time ¢t = 0
seconds.

Geometrically, if we have a reasonable formula for the slope of a curve as
a function of z and we have a starting point (zg, o) on the curve, then we
can find a formula that describes the curve itself by finding an antiderivative
for the slope function and adjusting the constant of integration to make
sure our curve passes through the given starting point. This introduces
the rather big subject of differential equations, one of the most important
topics in both pure and applied mathematics. For students in MAT103 it is
a good way to practice finding antiderivatives. Students in MAT104 learn
several powerful techniques for computing antiderivatives and then apply
those skills to additional examples of elementary differential equations that
appear commonly in many introductory science and engineering courses.

Example (Finding Area): Set up a definite integral for the total area of
the finite region bounded by the line y = x and the curve y = 23 — 3x.

Example (Projectile Motion): A tennis ball is dropped (not thrown)
from a building that is 80 meters tall. How long will it take the tennis ball to
hit the ground? What will its speed be when it hits the ground? The tennis
ball loses some energy in the impact and bounces back up with 75% of its
impact speed. How high will the tennis ball go on its first bounce? What is
the average speed of the tennis ball during the time interval 0 < ¢ < 107

Example (Initial Value Problem) If
dy/dx = x4 — x?

and y(0) = 0 then find a formula for y(z).



Answers

. (Limit of type 0/0)

>3x2—5x—2 3r+1
a =
3 —8 22+ 2x+4
b) 7/12
¢) f has a removable discontinuity at x = 2; its graph has a ‘hole’ at
the point (2,7/12).

. (L’Hopital Fails)
a) 3" dominates on top and 4* dominates on the bottom as x — +00.
2” dominates on top and 3 dominates on the bottom as x — —oc.
b) lim, . f(z) =0 and y = 0 is a horizontal asymptote as x — oc.
¢) lim,, o f(z) = co. As x goes to —oo, the graph is asymptotic
to y = (2/3)".
. (Computing Derivatives)
dy  3tan?(Inz)sec?(Inx)
a) — =
dz x
b) ¥ = (3 —y)/(z — 2) and there are two intersection points: (0,0)

and (5,5). The slope of C at (0,0) is —3/2 and the slope of the
curve at (5,5) will be —2/3.

c) The slope of the parabola at (1,1) is 2, so we need the line joining
(0,b) and (1,1) to have slope —1/2. So b = 3/2.

. (Rate of Change) v(t) = e /(2 — ¢?). The particle moves forward
when 0 < t < /2, reaching position s(\/§) = 2;“%5 when it reverses
direction and heads back toward its original position. Since s(t) — 0
as t — oo, the particle will travel a total distance of 2s(v/2) = 4*@'%‘2/5

during the given (infinite) time interval.

. (Continuity /Differentiability #1) For continuity we must have
a = 4, but 8 can be any real number. For differentiability, we must
have « =4 and g = —1.



6.

10.

11.

(Continuity /Differentiability #2) f is continuous because

f(0)=0= lim zsin(1/z)

z—0+
by the Sandwich or Squeeze Theorem. f is not differentiable there

because the right-hand derivative

hsin(1/h) = lim sin(1/h) = lim sin(u)

h—0+ h h—0t U—+00

does not exist, due to oscillation.

. (Curve-Sketching) The natural domain is (0, c0). The graph crosses

the z-axis at a 45° angle because the slope there is 1. There is local
minimum at the point (1/4/e,—1/(2¢)). The function is increasing on
the interval (1/4/e,00) and decreasing on the interval (0,1/+/e), There
is no global maximum and the range is [—1/(2¢), 00).

. (Constrained Optimization) Maximum volume possible is 72, ob-

tained from a 7 x 27 rectangle.
2
(Finding Area) 2/ (42 — 2%) dx = 8.
0

(Projectile Motion) The tennis ball hits the ground after 4 seconds
with a speed of 40 m/sec. It bounces back up with a speed of 30 m/sec
and reaches its peak height of 45 m after 3 seconds. The total distance
traveled by the tennis ball in the first 10 seconds is 80 4 45 + 45, and
so the average speed is 17 m/sec.

VI

(Initial Value Problem) y(z) = 2 — 3



