
MAT204 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT204 introduces the notion of vector space and linear dependence
concretely by looking at the solutions to a system of m linear equations
in n variables using vectors and matrices which are somewhat familiar to
many students. Gauss-Jordan elimination is the standard algorithm taught
in both MAT202 and MAT204 that produces not only the solution to a linear
system, but also the basis of the column space, row space, and null space
of a matrix. Gaussian elimination is further employed to derive the inverse
of a non-singular matrix. Matrices are then presented as representation of
linear transformations between vector spaces with respect to bases of both
the domain and range.

After a brief survey of of determinant, we proceed to introduce the notion
of eigenvalue and eigenvector of a square matrix along with their applications
to Markov processes and graph/network theory.

The course then focuses on both real and complex vector spaces with in-
ner product structure. The Gram-Schmid Process is an algorithm to render
any basis of a vector space into an orthonormal basis. Applications include
Fourier analysis and linear regression. The Spectral Theorem is then applied
to decompose any rectangular matrix into a product of orthogonal and di-
agonal matrices. Various applications of Singular Value Decomposition to
statistics, PCA, and machine learning are explored in lecture and homework
exercises.

Additional topics not covered in MAT202 also include normal matrices
and generalized spectral theorem, Jordan basis to diagonalize a deficient
matrix as much as possible, and applications to solving a system of first
order differential equations with constant coefficients.

A common feature of MAT202 and MAT204 exams are True and False
questions with which students often have most difficulty. MAT204 exam
questions are often more theoretical than MAT202, and involve simple proofs
using proof techniques such as proof by contradiction and proof by induc-
tions.

All sample problems here come from past MAT204 quizzes and exams
and are chosen to represent core concepts and techniques from the class
corresponding to a B-level of knowledge.



Problems on Vector Space and Linear Transformations

Example 1 (Gaussian Elimination)
The following system is not linear in the variables α, β, γ:

sinα + cos β + k tan γ = 1
2 sinα + 2 cos β = 0
sinα + 2 cos β + 2k tan γ = k

Nevertheless, try to solve the system. In particular, determine for what
values of k does the system have

(a) no solution?

(b) a uniqe solutions?

(c) infinitely many solutions?

Example 2 (Subspaces Associated to a Matrix)

A =

 0 1 2 3 4
0 2 4 8 12
0 0 0 4 8


Find a basis for the row space R(A), the column space C(A), and the
nullspace N(A) of A.

Example 3 (Subspace and Basis)

A =

 0 1 0
0 0 1
0 0 0


(a) Let V = {B ∈M(3, 3)|AB = BA}. Show that V is a vector space.

(b) Find a basis for V .

(c) Find the least positive integer k such that Ak = 0. Such matrices are
called nilpotent matrices of order k.



(d) Now suppose A is a non-zero n × n nilpotent matrix of order k, where
k > 0 is the least positive integer such that Ak = 0. Show that C(A) ∩
N(A) 6= {~0}, where C(A) is the column space of A and N(A) is the null
space of A.

(e) Again suppose A is an n×n nilpotent matrix of order k, show that k ≤ n.
Hint: Since Ak−1 6= 0, we can choose ~v ∈ Rn such that Ak−1~v 6= ~0. What
can you say about linear dependence of ~v, A~v, · · · , Ak−1~v?

Example 4 (Rank-Nullity Theorem)
Suppose A ∈M(4, 4) and A2 = 0, determine (with proof) the largest pos-

sible value k of rank(A) and give an example of a matrix A with rank(A) = k.

Example 5 (LDU Decomposition)

A =

 1 1 a+ 1
1 a+ 1 1

a+ 1 1 1

 , a 6= 0,−3

(a) Find the LDU -decomposition of A where L is unipotent lower triangular,
D is diagonal, and U is unipotent upper triangular.

(b) Find A−1

Example 6 (Change of Basis).
In signal processing, a measuring device can not capture all the infor-

mation in a signal which contains an infinite amount of data. Instead the
device can only sample a finite amount, at some fixed times. For example,
a measuring device might only sample a function f(t), for t = 0, 1, 2, 3, this
corresponds to sampling at 1Hz for 3 seconds.

S : F(R)→ R4, S(f) =


f(0)
f(1)
f(2)
f(3)


where F(R) is the vector space of all real valued functions on R. S transforms
a signal f(t) into a 4-dimensional vector consisting of f sampled at 4 different
times.



(a) Show that S is a linear transformation.

(b) Now restrict sampling to P3(R), the space of polynomials in x with real
coefficients of degree ≤ 3 where

S : P3(R)→ R4, S(p) =


p(0)
p(1)
p(2)
p(3)

 ,
find the matrix A representing the linear transformation S with respect
to the basis {1, x, x2, x3} of P3(R) and the standard basis of R4.

(c) Prove that S is an invertible linear transformation.

(d) Find the matrix B representing the linear transformation

T = S−1 : R4 → P3(R)

with respect to the basis {1, x, x2, x3} of P3(R) and the standard basis
of R4.

Example 7 (True or False)

For each of the following statements, select T if the statement is always

true or F if the statement is not always true. Justify your answers.

(a) T F : Let f1(x), f2(x), f3(x) ∈ P2(R), and f1(0) = f2(0) = f3(0) = 1,
then f1(x), f2(x), f3(x) must be linearly dependent.

(b) T F : If two m × n matrices A and B have the same row space and
column space, then A = B.

(c) T F : If any n− 1 vectors of ~v1, · · · , ~vn are linearly independent, then
~v1, · · · , ~vn are linearly independent.

(d) T F : Let A ∈ M(m,n), if the columns of A are linearly dependent,
then the rows of A are linearly dependent.

(e) T F : Suppose U, V,W are three distinct 2015-dimensional vector sub-
spaces of R2016, then U ∩ V ∩W must be at least 2013 dimensional.



(f) T F : If A and B are similar, namely A = SBS−1, then N(A) = N(B),
where N(A) denotes the null space of A.

(g) T F : Suppose A,B are symmetric matrices, i.e. At = A and Bt = B,
then AB is also symmetric.

Answers

1. (Gaussian Elimination)

rref

 1 1 k | 1
2 2 0 | 0
1 2 2k | k

 =

 1 0 0 | 2− k
0 1 0 | k − 2
0 0 k | 1


(a) k = 0: the system has no solution.

(b) k 6= 0:

• 1 ≤ k ≤ 3: the system as infinitely many solutions.

• k < 1 or k > 3: the system has no solution.

(c) The system never has a unique solution in α, β, γ.

2. (Subspaces Associated to a Matrix)

R(A) has basis




0
1
2
0
−2

 ,


0
0
0
1
2


; C(A) has basis


 1

2
0

 ,
 3

8
4

;

and N(A) has basis




1
0
0
0
0

 ,


0
2
0
−2
1

 ,


0
−2
1
0
0


.

3. (Subspace and Basis)

(a) Check linearity conditions are satisfied.



(b)

B =


 1 0 0

0 1 0
0 0 1

 ,
 0 1 0

0 0 1
0 0 0

 ,
 0 0 1

0 0 0
0 0 0

 =
{
I, A,A2

}
(c) k = 3

(d) Non-zero elements in the column space of Ak−1 is in C(A) and
N(A).

(e) First show that ~v, A~v, · · · , Ak−1~v are linearly independent in Rn,
so k ≤ n must hold by Replacement Theorem.

4. (Rank-Nullity Theorem)

rank(A) ≤ 2, A =


0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0


5. (LDU Decomposition)

(a)  1 1 a+ 1
1 a+ 1 1

a+ 1 1 1

 =

 1 0 0
1 1 0

a+ 1 −1 1

 1 0 0
0 a 0
0 0 −a(a+ 3)

 1 1 a+ 1
0 1 −1
0 0 1


(b)

A−1 =
1

a2(a+ 3)

 −1 −1 a+ 2
−1 a+ 2 −1
a+ 2 −1 −1


6. (Change of Basis)

(a) Check linearity conditions.



(b)

A =


1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27


(c) Show S is injective and surjective.

(d)

B =
1

6


6 0 0 0
−11 18 −9 2

6 −15 12 −3
−1 3 −3 1

 = A−1

7. (True or False)

(a) F

(b) F

(c) F

(d) F

(e) T

(f) F

(g) T

Problems on Determinants, Eigenvalues and Eigenvectors

Example 1 (Determinant)

(a) Let M be a 6×6 invertible matrix such that M4+2M = 0. Find det(M).

(b) Let A be an n× n matrix. Suppose AAt = In and det(A) < 0, show

det(A+ In) = 0.



(c) Compute the determinant of the n× n matrix An with diagonal entries
3 and 2’s just above and 1’s just below the diagonal.

3 2 0 0 · · · 0 0
1 3 2 0 · · · 0 0
0 1 3 2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 3 2
0 0 0 0 · · · 1 3



Example 2 (Eigenvalues and Diagonalization)

A =

 a+ 1 1 1
1 a+ 1 1
1 1 a+ 1

 , B =

 1 1 a+ 1
1 a+ 1 1

a+ 1 1 1


(a) Find all eigenvalues and a basis for each corresponding eigenspace of

A =

 a+ 1 1 1
1 a+ 1 1
1 1 a+ 1

 , a ∈ R

Hint: You are advised not to use brute force. What are the obvious
eigenvalues?

(b) Deduce det(A) and det(B).
Hint: You are advised not to use brute force.

(c) Find all eigenvalues and a basis for each corresponding eigenspace of B.
Hint: You are advised not to use brute force! What is an obvious eigen-
value? How can part (b) help?

(d) When are A and B similar? Namely, for what values of a ∈ R, if any,
does there exist invertible S such that A = SBS−1?

(e) When are A and B simultaneously diagonalizable? Namely, for what
values of a ∈ R, if any, does there exist invertible S such that A = SDS−1

and B = SES−1 where D and E are diagonal matrices.



Example 3 (Complex Eigenvalues)
Suppose An is an n × n matrix with aj,j+1 = 1 for 1 ≤ j ≤ n − 1 and

an1 = bn and aij = 0 otherwise. Namely,

An =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
bn 0 0 · · · 0


(a) Find the eigenvalues and corresponding eigenvectors of An over C.

Hint: You may wish to start with the case n = 3 and then figure out the
general solution.

(b) Find A−1n .

Example 4 (True or False)

For each of the following statements, select T if the statement is always

true or F if the statement is not always true. Justify your answers.

(a) T F : Suppose det(A) = det(B) = 0, then det

([
A B
B A

])
= 0.

(b) T F : Let A be an n×n matrix, if In−A2018 is invertible, then In−A
is also invertible.

(c) T F : Suppose A ∈M(n, n), then A and At have the same eigenvectors.

(d) T F : Suppose A and B are two n×n matrices, the AB and BA must
be similar.

Answers

1. (Determinant)

(a) 4

(b) Write In as AAt and use multiplicative property of determinant.

(c) det(An) = 2n+1 − 1.



2. Eigenvalues and Diagonalization)

(a) a+ 3-eigenvector is

 1
1
1

; a-eigenbasis is


 1
−1
0

 ,
 1

0
−1

.

(b)
det(A) = a2(a+ 3), det(B) = −a2(a+ 3)

(c) a+ 3-eigenvector is

 1
1
1

; a-eigenbasis is


 1
−2
1

 ,
 1

0
−1

.

(d) a = 0

(e) For all a.

3. (Complex Eigenvalues)

(a)

An


1
bωk

b2ω2k

...
bn−1ω(n−1)k

 = bωk


1
bωk

b2ω2k

...
bn−1ω(n−1)k

 , ω = ei2π/n, 0 ≤ k ≤ n−1

(b)

A−1N =


0 0 · · · 0 b−n

1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


4. (True or False)

(a) F

(b) T

(c) F



(d) F

Problems on Inner Product Space

Example 1 (QR Decomposition)

M =


1 −1 −1
1 1 −1
1 1 1
1 1 1


(a) Find the QR decomposition M = QR, where Q is an orthogonal matrix

and R an upper triangular matrix with positive diagonal entries.

(b) Find det(M tM) and det(MM t). You are advised not to use brute force.

Example 2 (Singular Value Decomposition)

A =


1 −1 −1
1 −1 1
1 −1 0

2
√

2 0 0


(a) Find the Singular Value Decomposition (SVD) of A where

A = V DU t

where V and U are orthogonal matrices and D is diagonal.

(b) Find the least squares solution to A~x =


1
1
1√
2

.

(c) Find the pseudo inverse A+ of A, and compute A+A and AA+.

(d) Find the least squares solution of minimal norm to At~y =

 1
1
1

.



Example 3 (Hermitian Matrices)
Suppose A is an n× n Hermitian matrix. Prove that

(a) A− iIn is invertible, where i2 = −1 and In is n× n identity matrix.

(b) B = (A− iIn)−1(A+ iIn) is unitary.

(c) B − In is invertible.

Example 4 (Positive Definiteness)

A =

 1 1 1
1 x 2
1 2 3


(a) For what values of x is A positive definite?

(b) For what values of x is A2 positive definite?
Hint: You do not need to compute A2.

Example 5 (True or False)

For each of the following statements, select T if the statement is always

true or F if the statement is not always true. Justify your answers.

(a) T F : I − 2P is an orthogonal matrix if P is an orthogonal projection
matrix.

(b) T F : For any n×n matrix A with A2 = A, ‖A~v‖ ≤ ‖~v‖ for all ~v ∈ Rn.

(c) T F : If A is a skew-symmetric n×n real matrix, then QA(~v) = ~vtA~v =
0 for all ~v ∈ Rn.

(d) T F : If A is a skew-Hermitian n × n complex matrix, then QA(~v) =
~v∗A~v = 0 for all ~v ∈ Cn.

(e) T F : If A is Hermitian, and A2015 = I, then A = I.

(f) T F : If A has only positive eigenvalues, then A is positive definite.

Answers

1. (QR Decomposition)



(a)

M =


1
2
− 3√

12
0

1
2

1√
12

− 2√
6

1
2

1√
12

1√
6

1
2

1√
12

1√
6


 2 1 0

0
√

3 2√
3

0 0 2
√
6

3


(b)

det(M tM) = 32, det(MM t) = 0

2. (Singular Value Decomposition)

(a)

A =
1√
30


2 −

√
15 −

√
6
√

5

2
√

15 −
√

6
√

5

2 0 −
√

6 −2
√

5

3
√

2 0 2
√

3 0




2
√

3 0 0

0
√

2 0

0 0
√

2
0 0 0

 1√
10

 3 0 1
−1 0 3

0
√

10 0


(b)  1

2

−1
2

0


(c)

A+ =
1

24

 0 0 0 6
√

2

−8 −8 −8 6
√

2
−12 12 0 0

 , A+A =

 1 0 0
0 1 0
0 0 1



AA+ =


5
6
−1

6
1
3

0
−1

6
5
6

1
3

0
1
3

1
3

1
3

0
0 0 0 1


(d)

1

24


−20

4
−8

12
√

2





3. (Hermitian Matrices)

(a) Show the eigenvalues of A− iI are never 0.

(b) Show BB∗ = In.

(c) Eigenvalues of B are never 0.

4. (Positive Definiteness)

(a) x > 3
2

(b) x 6= 3
2
.

5. (True or False)

(a) T

(b) F

(c) T

(d) F

(e) T

(f) F

Problems on Jordan Basis and Differential Equations

Example 1 (Jordan Basis)
Recall that P3(R) is the vector space of all polynomials in x with real

coefficients of degree ≤ 3. Fix some a ∈ R, let T : P3(R) → P3(R) be the
linear transformation where

T (1) = 2, T (x) = 2x+1, T (x2) = 2x2+a, T (x3) = 2x3+x2−ax+a2.

(a) Find the 4 × 4 matrix A representing the linear transformation T with
respect to the basis {1, x, x2, x3}.

(b) Find the Jordan normal form of A and a Jordan chain basis for A.

(c) Find T 3(x3).



Example 2 (System of Differential Equations)
Consider the following system of differential equations

x′(t) = y(t)

y′(t) = −2x(t) + 3y(t) + z(t)

z′(t) = x(t)− y(t)

Given the initial conditions

x(0) = 1, y(0) = 0, z(0) = 1,

solve for x(t), y(t) and z(t).

Example 3 (True or False)

For each of the following statements, select T if the statement is always

true or F if the statement is not always true. Justify your answers.

(a) T F : If A ∈ M(4, 4) satisfies 0 < rank(A3) < rank(A2) < rank(A),

then the Jordan normal form of A is J =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 regardless of

what A4 is.

(b) T F : Any n× n matrix A is similar to its transpose At.

(c) T F : If A and B have Jordan normal forms JA and JB respectively,

then

[
A C
0 B

]
has Jordan normal form

[
JA 0
0 JB

]
.

Answers

1. (Jordan Basis)

(a)

A =


2 1 a a2

0 2 0 −a
0 0 2 1
0 0 0 2





(b)

J =


2 1 0 0
0 2 0 0
0 0 2 1
0 0 0 2



A chain basis consists of two chains:




1
0
0
0

 ,


0
1
0
0


,




0
−a
1
0

 ,


0
0
−a
1


.

(c)
T 3(x3) = 23x3 + 3 · 22x2 − 3 · 22ax+ 3 · 22a2

2. (System of Differential Equations) x(t)
y(t)
z(t)

 =

 et − tet
−tet
et



3. (True or False)

(a) F

(b) T

(c) F


