1. (a) Show that a necessary condition for $2^m - 1$ to be a prime is that m is a prime.

(b) For a positive integer n, let $\sigma(n) = \sum_{d|n} d$ be the sum of the positive divisors of n. An integer n is called *perfect* if $\sigma(n) = 2n$. Show that an even integer n is perfect if and only if $n = 2^{p-1}(2^p - 1)$ with p and $2^p - 1$ both primes.

2. (a) Explain why $x^2 + xy + 2y^2$ is the only reduced positive definite binary quadratic form of discriminant -7.

(b) Show that an odd prime $p \neq 7$ can be expressed as $p = x^2 + xy + 2y^2$ with x and y integers if and only if $p \equiv 1, 2, 4 \mod 7$.

- 3. Let p > 2 be a prime. Let $\left(\frac{\cdot}{p}\right)$ denote the Legendre symbol.
 - (a) Show that

$$\sum_{k=1}^{p-1} \left(\frac{k(k+1)}{p} \right) = -1.$$

(b) Assume that p > 5. Show that there are consecutive integers n and n + 1 that are both quadratic residues modulo p.

4. Let $\pi(x)$ be the number of primes less than x. Suppose that the Prime Number Theorem holds:

$$\pi(x) \sim \frac{x}{\log x}.$$

Show that for every constant c > 1 there exists x(c) > 0 such that if x > x(c) then the interval [x, cx] contains at least one prime number.