The Weyl law for algebraic tori

-
Ian Petrow, ETH Zürich
IAS Room S-101

A basic but difficult question in the analytic theory of automorphic forms is: given a reductive group G and a representation r of its L-group, how many automorphic representations of bounded analytic conductor are there? In this talk I will present an answer to this question in the case that G is a torus over a number field.