Arnold Diffusion via Invariant Cylinders and Mather Variational Method (joint with Ke Zhang)
Arnold Diffusion via Invariant Cylinders and Mather Variational Method (joint with Ke Zhang)
The famous ergodic hypothesis claims that a typical Hamiltonian dynamics on a typical energy surface is ergodic. However, KAM theory disproves this. It establishes a persistent set of positive measure of invariant KAM tori. The (weaker) quasi-ergodic hypothesis, proposed by Ehrenfest and Birkhoff, says that a typical Hamiltonian dynamics on a typical energy surface has a dense orbit. This question is wide open. In early 60th Arnold constructed an example of instabilities for a nearly integrable Hamiltonian of dimension $n>2$ and conjectured that this is a generic phenomenon, nowadays, called Arnold diffusion. In the last two decades a variety of powerful techniques to attack this problem were developed. In particular, Mather discovered a large class of invariant sets and a delicate variational technique to shadow them. In a series of preprints: one joint with P. Bernard, K. Zhang and two with K. Zhang we prove Arnold's conjecture in dimension $n=3$.