The Yau-Tian-Donaldson conjecture for general polarized manifolds with finite automorphism group

-
Sean Paul, University of Wisconsin, Madison
Fine Hall 314

According to the Yau-Tian-Donaldson conjecture, the existence of a constant scalar curvature Kähler (cscK) metric in the cohomology class of an ample line bundle L on a compact complex manifold X should be equivalent to an algebro-geometric "stability condition" satisfied by the pair (X,L). The cscK metrics are the critical points of Mabuchi's K-energy functional M, defined on the space of Kähler potentials, and an important result of Chen-Cheng shows that cscK metrics exist iff M satisfies a standard growth condition (coercivity/properness). Recently the speaker has shown that the K-energy is indeed proper if and only if the polarized manifold is stable. The stability condition is closely related to the classical notion of Hilbert-Mumford stability. The speaker will give a non-technical account of the many areas of mathematics that are involved in the proof. In particular, he hopes to discuss the surprising role played by arithmetic geometry ​in the spirit of Arakelov, Faltings, and Bismut-Gillet-Soule.